Acta Crystallographica Section C
Crystal Structure
Communications

(Acetonitrile)[2,6-bis(pyrazol-1-yl)-pyridine](isonicotinamide)copper(II)-tetrafluoroborate-acetonitrile (1/2/2)

Gerhard Baum, ${ }^{\text {a }}$ Alexander J. Blake, ${ }^{\text {b } *}$ Dieter Fenske, ${ }^{\text {a }}$ Peter Hubberstey, ${ }^{\text {b }}$ Carine Julio ${ }^{\text {b }}$ and Matthew A. Withersby ${ }^{\text {b }}$

[^0]Received 19 September 2002
Accepted 2 October 2002
Online 22 October 2002
Molecules of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, comprise (acetonitrile) $[2,6$-bis-(pyrazol-1-yl)pyridine](isonicotinamide)copper(II) cations, tetrafluoroborate anions and lattice acetonitrile molecules. The cations have distorted square-pyramidal geometries in which the N_{3}-donor, viz. 2,6-bis(pyrazol-1-yl)pyridine, and the N -donor, viz. the isonicotinamide ligand, occupy the four basal positions, with the coordinated acetonitrile N -donor atom occupying the apical position. Pairs of cations are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds through tetrafluoroborate anions, forming centrosymmetric dimers, which are further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into two-dimensional undulating sheets, three of which interpenetrate to generate a two-dimensional network.

Comment

The title compound, (I), comprises an (acetonitrile)[2,6-bis(pyrazol-1-yl)pyridine](isonicotinamide)copper(II) cation (Fig. 1), two tetrafluoroborate anions and two lattice acetonitrile molecules. All four F atoms of both tetrafluoroborate anions are each disordered over two sites. The tridentate 2,6-bis(pyrazol-1-yl)pyridine ligand occupies three of the four basal positions of a distorted square-pyramidal CuN_{5} coordination sphere. The isonicotinamide ligand occupies the fourth basal position and the coordinated acetonitrile molecule occupies the apical position. Of the three ligating N atoms of the tridentate ligand, the pyrazole N -donor atoms form much longer $\mathrm{Cu}-\mathrm{N}$ bonds [2.024 (3) and 2.026 (3) \AA] than the pyridine N -donor atom $[1.946$ (2) \AA] , which forms a $\mathrm{Cu} \cdots \mathrm{N}$ contact similar to the isonicotinamide N -donor atom [1.964 (2) \AA]. Typical of square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ centres, the apical acetonitrile- N atom is somewhat more distant $\left[2.316\right.$ (3) \AA A. The magnitude of the distortion of the $\mathrm{Cu}^{\mathrm{II}}$ coordination sphere (Fig. 1) can be quantified by the
geometric parameter τ [i.e. $(171.42-156.94) / 60]$ of $0.24(\tau=$ 0.0 for $C_{4 v}$ symmetry and $\tau=1.0$ for $D_{3 h}$ symmetry; Addison et al., 1984). The conformation of the pyridine ring of the isonicotinamide ligand is such that it makes a dihedral angle of

(I)
$47.8(8)^{\circ}$ with the pyridine ring of the tridentate ligand, which is effectively planar, with dihedral angles between the pyrazole and pyridine rings of 1.3 (2) and 6.3 (2) ${ }^{\circ}$.

The cations form centrosymmetrically related pairs (Fig. 2) linked through two tetrafluoroborate anions by an $R_{4}^{4}(12)$ hydrogen-bonding motif (Etter, 1990; Bernstein et al., 1995).

(a)

(b)

(c)
Scheme 1

Pertinent structural parameters of the hydrogen-bonded contacts are collated in Table 2. The formation of this motif [Scheme $1(a)$] was unexpected, the simpler $R_{2}^{2}(8)$ motif [see

Figure 1
A view of the cation in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
A view of the centrosymmetric hydrogen-bonded dinuclear construction generated by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contacts of the hydrogen-bonded $R_{4}^{4}(12)$ motif. Only one set of F atoms ($\mathrm{F} 11 A, \mathrm{~F} 12 A, \mathrm{~F} 13 A$ and $\mathrm{F} 14 A$) is shown for each tetrafluoroborate anion. (Key: Cu atoms are large pale-grey spheres, C are intermediate black spheres, N are intermediate dark-grey spheres, O are intermediate pale-grey spheres, B are small pale-grey spheres and F are intermediate black spheres.)

Scheme $1(b)$] based on the amide functionalities being anticipated by analogy with the well known carboxylic acidbased $R_{2}^{2}(8)$ supramolecular synthon [Scheme 1(c)] (Desiraju, 1995, 2000). Presumably, despite the greater strength of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond compared with the $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{F}-\mathrm{BF}_{3}$ hydrogen bond, the energy release associated with the formation of four of the latter is greater than that associated with the formation of two of the former. Two C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, in the form of an $R_{2}^{1}(7)$ motif, link the dimers through the amide-O atom, generating an undulating sheet structure parallel to the (001) plane (Table 2 and Fig. 3). The periodicity of the undulation ($24.5 \AA$) is such that the twodimensional network comprises three interpenetrating sheets analogous to those observed in $\left\{\left[\mathrm{Co}_{2}\left(\mu-4,4^{\prime} \text {-azopyridine }\right)_{3^{-}}\right.\right.$ $\left.\left.\left(\mathrm{NO}_{3}\right)_{4}\right]\right\}_{n}$ (Withersby et al., 1999, 2000).

Experimental

The ligand 2,6-bis(pyrazol-1-yl)pyridine was synthesized by heating at reflux for 72 h the mixture formed by adding 2,6 -dichloropyridine $(4.12 \mathrm{~g}, 27.8 \mathrm{mmol})$ to a solution of sodium pyrazolate previously prepared in tetrahydrofuran $(100 \mathrm{ml})$ by reaction of pyrazole $(3.80 \mathrm{~g}$, 55.8 mmol) with excess $\mathrm{NaH}(60 \%$ dispersion in mineral oil; 2.80 g , 70 mmol). After cooling, the mixture was poured into iced water and the resulting precipitate recovered by filtration (yield: 5.10 g , $23.7 \mathrm{mmol}, 85 \%$). For the preparation of the title compound, (I), isonicotinamide $(0.040 \mathrm{~g}, 0.33 \mathrm{mmol})$ was added to a mixture of 2,6-bis(pyrazol-1-yl)pyridine $(0.068 \mathrm{~g}, \quad 0.32 \mathrm{mmol})$ and hydrated $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.32 \mathrm{mmol})$ in acetonitrile $(25 \mathrm{ml})$. After stirring at ambient temperature for 24 h , the resulting green solution afforded a small crop of green plate-like crystals.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right.\right.$ $\left.\left.\mathrm{N}_{2} \mathrm{O}\right)\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=693.68$
Orthorhombic, $P_{\circ} b c a$
$a=8.1790$ (16) \AA
$b=22.747$ (5) \AA
$c=31.752(6) \AA$
$V=5907(2) \AA^{3}$
$Z=8$
$D_{x}=1.560 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12955
reflections
$\theta=2.5-25.5^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Plate, green
$0.32 \times 0.08 \times 0.02 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer Area detector scans Absorption correction: multi-scan
(IPDS; Stoe \& Cie, 1995)
$T_{\text {min }}=0.84, T_{\text {max }}=0.95$
19461 measured reflections 6613 independent reflections

4385 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=28.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-30 \rightarrow 25$
$l=-42 \rightarrow 29$
Intensity decay: none

Figure 3
A projection of the structure of (I) on to the (001) plane, showing the two-dimensional sheet structure generated by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts of the hydrogen-bonded $R_{2}^{1}(7)$ motif. The lattice acetonitrile molecules and tetrafluoroborate anions have been omitted for clarity. Only one set of F atoms ($\mathrm{F} 11 A, \mathrm{~F} 12 A, \mathrm{~F} 13 A$ and $\mathrm{F} 14 A$) is shown for each tetrafluoroborate anion (atom types are as depicted in Fig. 2).

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.945(3)$	$\mathrm{Cu} 1-\mathrm{N} 22$	$2.024(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.316(3)$	$\mathrm{Cu} 1-\mathrm{N} 62$	$2.026(3)$
$\mathrm{Cu} 1-\mathrm{N} 11$	$1.964(3)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$93.41(12)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 22$	$93.70(14)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 11$	$171.42(13)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 62$	$93.29(14)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 22$	$78.87(12)$	$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{N} 22$	$101.55(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 62$	$78.80(11)$	$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{N} 62$	$99.67(12)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 11$	$95.12(12)$	$\mathrm{N} 22-\mathrm{Cu} 1-\mathrm{N} 62$	$156.94(11)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 17-\mathrm{H} 17 A \cdots \mathrm{~F} 11 A^{\mathrm{i}}$	0.88	2.60	$3.334(6)$	142
$\mathrm{~N} 17-\mathrm{H} 17 B \cdots \mathrm{~F} 11 A^{\mathrm{ii}}$	0.88	2.09	$2.900(6)$	152
$\mathrm{~N} 17-\mathrm{H} 17 B \cdots \mathrm{~F} 11 B^{\mathrm{ii}}$	0.88	2.01	$2.866(7)$	163
$\mathrm{~N} 17-\mathrm{H} 17 A \cdots \mathrm{~F} 12 A^{\mathrm{i}}$	0.88	2.12	$2.971(5)$	163
$\mathrm{~N} 17-\mathrm{H} 17 A \cdots \mathrm{~F} 12 B^{\mathrm{i}}$	0.88	2.03	$2.885(7)$	163
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 17^{\mathrm{iii}}$	0.95	2.22	$3.140(5)$	162
C65-H65 $\mathrm{O}^{\mathrm{iii}}$	0.95	2.36	$3.221(4)$	151

Symmetry codes: (i) $1-x,-y,-z$; (ii) $1+x, y, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.175$
$S=1.01$
6613 reflections
401 parameters

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.115 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e}^{\AA^{-3}}$

The tetrafluoroborate anions are affected by disorder; this was modelled by allowing alternative positions for each F atom, with extensive restraints applied to $\mathrm{B}-\mathrm{F}$ distances and $\mathrm{F}-\mathrm{B}-\mathrm{F}$ angles. Around atom B 1 , the major and minor orientations refined to occupancies of 0.57 (2) and $0.43(2)$, respectively, while the corre-
sponding occupancies around atom B2 converged to 0.60 (1) and 0.40 (1). Aromatic and amide H atoms, after location from ΔF syntheses, were placed geometrically and refined with a riding model, for which the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances were constrained to be 0.95 and $0.88 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. Methyl H atoms were located and treated similarly, with $\mathrm{C}-\mathrm{H}$ distances constrained to be $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$

Data collection: IPDS (Stoe \& Cie, 1995); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

The authors thank the University of Nottingham for financial support (to MAW).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1141). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Nageswara Rao, T., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.
Stoe \& Cie (1995). IPDS. Stoe \& Cie, Darmstadt, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Realf, A. L., Teat, S. J. \& Schröder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 3261-3268.
Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. \& Schröder, M. (1999). New J. Chem. 23, 573-575.

[^0]: ${ }^{\text {a }}$ Institut für Anorganische Chemie, Universitat Karlsruhe, Engesserstraße, 76128 Karlsruhe, Germany, and ${ }^{\mathbf{b}}$ School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
 Correspondence e-mail: a.j.blake@nottingham.ac.uk

